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Abstract
Mapping the assembled patterns of nanoparticles onto networks (mathematical graphs) provides
a way for quantitative analysis of the structure effects on the physical properties of the
assembly. Here we review the network modeling of the conduction with single-electron
tunneling mechanisms in the assembled nanoparticle films. Simulations of the conduction
predict the nonlinear current–voltage curves in different classes of the nanoparticle networks.
Furthermore, the numerical analysis reveals how the I (V ) nonlinearity is related to the
collective charge fluctuations along the conducting paths through the sample, and stresses the
role of the topology and quenched charge disorder.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Self-assembly processes and the emergent properties of nano-
structured systems have introduced some new directions
in the recent developments of materials science and
technology [1–5]. It has been recognized that the
physics and chemistry at the nanoscale differ from that of
atoms and bulk material of the same composition [6, 7].
Furthermore, a new route to the macro-world was established
via assembly of nano-objects into higher level complex
structures and functional devices [8, 9]. The assembled
systems of nanoparticles, biomolecules, etc, exhibit a wide
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range of fascinating patterns and multiscale structures with
emergent physical properties, often incompatible with classical
crystalline solids [5]. Some striking examples of assembled
‘soft’ nanomaterials include supracrystals [10–12], colloidal
aggregates [13–16], DNA-guided assemblies [17–21] and
bio-nano-heterostructures [22–24], and nanoparticle films on
substrates [25–28], which are the subject of this work.
These new materials are interesting for various technology
applications [2, 3, 29], which naturally require stable and
reproducible assembly processes. However, the control of
the assembly processes of nano-size objects into higher-order
structures and their emergent physical properties still remains
a challenging problem for nanoscience and technology. On
the other hand, fabrication methods and experimental study as
well as the practical applications of various nanomaterials are
advancing fast, mainly guided by the accumulating empirical
knowledge. However, the full theoretical understanding of
the mechanism and potential control of the new properties of
nanomaterials is still elusive.

1.1. Complexity of nanoparticle assemblies

The assembly processes are examples of nonlinear driven
processes, which are often the subject of various constraints
[8, 9, 30]. The spontaneous association of the components with
the self-organizing principle, in which local constraints are
systematically satisfied, leads to stable multiscale structures.
In view of the nonlinear interactions, in complex systems the
processes at the micro-scale lead to the resulting behavior on
the large scale. In the same spirit, the emergent properties
of new nanomaterials consisting of nano-objects as building
blocks stems from the nonlinear interactions between these
constitutive elements over different scales. To describe
the assembled nanomaterials, different theoretical concepts
and the appropriate methods are required for the quantum
phenomena [6, 31] at the level of the individual nanoparticles
and small clusters, on one hand, and for the collective behavior
of complex large-scale structures, on the other. Consequently,
a unified theoretical approach across all scales is missing.
The appropriate numerical modeling and simulations of the
physical processes in nanomaterials is, therefore, a method
of primary importance. Despite the necessary simplifications
and possible technical limitations, numerical modeling helps
in understanding dynamical phenomena in the nanoparticle
assemblies and provides the way to study the appearance
of new properties at the macro-scale. Specifically, within a
numerical model one can characterize the physical properties
of an assembly by

• computing relevant quantities, which can be defined
at different scales and not necessarily be accessible to
laboratory experiments;

• exploring a wide range of parameters, which can be used
as a guide for experimental analysis and applications;

• determining those parameters which are likely to tune
the emergent properties of the ensemble in the desired
direction.

In the present work we precisely address these issues in the
numerical modeling of charge transport in metal nanoparticle

films, which are conducting via single-electron tunneling
mechanisms. The phenomenology of conducting nanoparticle
films is briefly summarized below. Recently a comprehensive
review of the experimental methods which are used to fabricate
conducting nanoparticle assemblies and to measure charge
transport in these systems was given in [32]. A full range
of other methods and the analysis of various properties of
nanoparticle assemblies can be also found in [5].

1.2. Phenomenology of the conducting nanoparticle films

Conducting nanoparticle films are usually made by the
assembly of noble-metal or semiconductor nanoparticles [32].
Gold nanoparticles, which are often used, and their assemblies
exhibit prominent features across different scales [33] and
have various applications in microelectronics, optics and
biology. Specifically, an isolated gold nanoparticle has
electronic and optical properties which are different from the
bulk material. Gold nanoparticles can be used for catalysis
of certain chemical reactions [33], they can be chemically
‘functionalized’ to connect to each other along pre-specified
directions [34], or coated with polymers, proteins, and DNA
molecules, to provide biorecognition binding [35, 22, 36].

Metal nanoparticle films can be produced using different
methods [32]. Among well established approaches are
lithography [27], drop casting [37] of particles on a
substrate, and methods with a liquid support [38, 39],
where manipulations with pressure, motion of the liquid and
evaporation processes all have an effect of the emergent
nanoparticle patterns. In addition, nanoparticle films with a
wide variety of structures have been obtained using a non-
equilibrium dewetting with a neutral solvent [39, 26, 40] or a
charged polymer solution [41], and etching of a polymer matrix
with embedded nanoparticles [25]. They range from regular
close-packed arrays [42, 43] and nano-networks with well-
organized cells [38, 41] to multicellular fractal structures [44]
and glassy disordered deposits [45]. (As an illustration,
some examples of such nanoparticle films from the literature
which inspired our work are shown in figure 1.) Induced by
solvent dewetting, effective long-range interactions between
the nanoparticles and between the nanoparticles and the
substrate are responsible for the spatial structure of the film.
The films obtained by different methods also vary in their
stability, in view of the binding forces involved, e.g., covalent
or hydrogen forces occurring in the case with cross-linking
assembly, compared with weak van der Waals forces in the
case of liquid support and drop casting methods [32]. Apart
from the fabrication procedure and the chemical composition
of the nanoparticles, other parameters that may affect the
emergent structure are: size (and the dispersion of sizes)
of the nanoparticles, and nature of the solvent and the
substrate. Additional effects are due to volume fraction
of the nanoparticles and steric interactions of the attached
thiol chains, or other molecules used to stabilize the metal
nanoparticles. In the cross-linking via attached biomolecules,
e.g., compatible DNA parts which provide a specific binding,
both the nature and the length of the molecules play a
role [46, 17–21]. For example, the typical size of Au
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(a) (b)

(c) (d)

Figure 1. Examples of different patterns of gold nanoparticle films: (a) regular close-packed array (reproduced with permission from [43].
©2001, Elsevier); (b) polygonal network obtained by drying in a charged polymer solution (reproduced with permission from [41]. ©2004,
American Chemical Society); (c) inhomogeneous film made by surface vertical deposition with different velocities (reproduced with
permission from [45]. ©2003, IOP Publishing); (d) self-assembled cellular network made by liquid evaporation (reproduced with permission
from [44]. ©2010, Oxford University Press).

nanoparticles used in conducting films is in the range 2–7 nm,
they are often capped with Cn S molecules, and the distance
between pairs of nanoparticles in the assembled film varies
between 0.5 and 2.5 nm [32], with the structure depending
on the fabrication method and other parameters, as discussed
above.

Metallic nanoparticle films on substrates have interesting
conduction properties [47–49]. When a positive bias voltage
is applied at an electrode the film behaves as a capacitively
coupled system [50, 51]. The junction between the pair
of nanoparticles represents a quantum tunneling resistor–
capacitor junction. Due to the small size and resultantly small
capacitance of the nanoparticles, charging of a particle by
a single electron would increase the particle energy by an
amount e2/2C � kBT , an effect known as the Coulomb
blockade [52, 49]. Hence single-electron tunneling through the
labyrinth of junctions in films of small metallic nanoparticles
appears as a dominant conduction mechanism [53, 49, 48].
The single-electron processes are highly interesting for new
technologies in view of their quantized nature and the absence
of thermal dissipation [2].

Conducting nanoparticle films on substrates have been
investigated extensively [47, 48, 54, 38, 55–57, 32]. Large
amounts of data are now available which suggest a strong
connection along the line assembly–structure–conduction-

properties in nanoparticle films. For the above mentioned
nanoparticle films the conductivities are found in the range [32]
from 5×10−6 to 1×10−2 �−1 cm−1, varying with the distance
between the nanoparticles. One of the most striking features
is the occurrence of nonlinearity in current–voltage curves
according to the expression

I (V ) = B

(
V − VT

VT

)ζ

. (1)

It is observed within a range of voltages V just above the
threshold voltage VT, where the electrons penetrating through
the pattern of junctions reach the zero-voltage electrode for the
first time. The degree of nonlinearity, measured by the scaling
exponent ζ , was found to vary considerably with the structure
of the film, which in turn is strongly related to the method by
which the film was prepared. Experimentally measured values
in various nanoparticle films on two-dimensional substrates
were found in the range from ζ = 2.25, in a regular close-
packed structure [54], to ζ = 4.12, measured in highly
inhomogeneous fractal film structures [58]. Furthermore,
the presence of fractional charges at the contacts between
the nanoparticles and the substrate (charge disorder), the
distribution of the size of particles, and the temperature are
found to affect the I (V ) curves and the threshold voltage in
nanoparticle films [54, 59, 38].
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Theoretical models of conducting films with the single-
electron tunneling between capacitively coupled units have
been developed [53, 50, 51, 54–57], with most attention
devoted to the study of regular super-lattices and quenched
charge disorder [51]. Three regimes can be distinguished,
having different dynamic behavior: charge penetration through
the sample for V < VT, percolation-type phenomena at the
threshold voltage V � VT, and another behavior at very large
voltages V � VT. The nonlinear current–voltage curves
in equation (1) can be related to certain dynamic critical
phenomena at the threshold voltage VT. The enhancement of
the current for the range of voltages V � VT is attributed to
the opening of many conducting paths through the sample,
which contribute to the cooperative dynamical behavior of
the charge transport. In recent studies [58, 60, 44, 61] we
proposed mapping of the capacitively coupled nanoparticle
films onto nanoparticle networks (mathematical graphs).
Within this approach, which we also use here, films of a
general structure can be considered. Moreover, the dynamic
behavior along the conduction paths and their topology can
be analyzed quantitatively. In addition to topology, related
to the conduction paths is the role of quenched charge
disorder. Quenched disorder in various dynamical systems
was studied extensively during 90s. Here we mention the
disorder-induced universal behavior in the problem of optimal
paths [62], optimal channel networks [63], and river network
dynamics [64], which share some similarity with charge
transport in nanoparticle networks.

In this review we present a detailed numerical study
based on the network models of single-electron conduction
in monolayer nanoparticle films of a general structure.
Implementing the single-electron tunneling dynamics on the
nanoparticle networks, we perform extensive simulations on
different types of structure and analyze the obtained data in
view of the driven dynamical systems. The emphasis is on
the collective dynamic behavior, which is behind the nonlinear
I (V ) curves and other observed scaling phenomena, and their
relation to the film structure.

2. Single-electron tunneling in systems of
nanoparticles

We first describe some basic physical features and parameters
of the single-electron tunneling conduction of an isolated
junction and of a single nanoparticle, which are basic structural
elements of nanoparticle networks.

2.1. Conditions of the Coulomb blockade

Consider a system of metallic nanoparticles arranged on a
substrate, separated at small distances from each other and
subject to a bias voltage applied to the electrodes across
the system. In this system of nano-size conductors, the
capacitances are so small that the charging energy due to a
single electron e2/2C may become larger than the thermal
energy kBT . Thus the transfer of a single electron between
conductors results in a voltage change which creates an energy
barrier for further transfer of the electrons—this phenomenon
is known as the Coulomb blockade [49]. The barrier persists
until the external potential is increased enough to overcome

Figure 2. Schematic view of a system with a junction between two
metal nanoparticles (a) without and (b) with an applied potential V .

the charging energy. In addition, the charge is well localized
on nanoparticles. Using the energy uncertainty relation

�E�t � h, (2)

where the charging energy �E ∼ e2/C and the time for a
charge transfer between two nanoparticles is given by �t ∼
RtC , we have that the tunneling resistance Rt needs to satisfy
the relation

Rt � h

e2
= 25.813 k�. (3)

Therefore, single-electron tunneling occurs in the system of
nanoparticles when the following conditions are fulfilled:

• the electrostatic energy e2/2C � thermal energy kBT ,
and

• the tunneling resistance Rt � quantum resistance h/e2.

At room temperature the first condition is satisfied for spherical
nanoparticles with a radius in the range d � 10 nm, whereas
the tunneling resistance generally depends on the nature of the
nanoparticles and the distances between them, as discussed
above.

2.2. Electron tunneling at a single junction

When the conditions of the Coulomb blockade are fulfilled,
conduction through a junction between an isolated pair of
nanoparticles can be considered as a single-electron process
within perturbation theory. The transfer Hamiltonian approach
for the electron tunneling across a junction, see the schematic
view in figure 2, is briefly described in [49]. The two
conductors on the left and the right side of the junction,
described with the Hamiltonian Hl and Hr, respectively, are
independent of each other except for the perturbation Ht, which
represents the electron tunneling between them. The total
Hamiltonian of the system is given as H = Hl + Hr + Ht

and it is assumed that the eigenvectors and eigenvalues of both
the left and right Hamiltonians are known:

Hl�l = El�l, Hr�r = Er�r. (4)

Using the fermion creation and annihilation operators of
independent many-body states of these two systems, c†

l,r and
cl,r, one can write the total Hamiltonian as

H0 = Hl + Hr =
∑

kl

Ekl c
†
kl

ckl +
∑

kr

Ekr c
†
kr

ckr, (5)

Ht =
∑
kl,kr

Tkl,kr c
†
kr

ckl +
∑
kl,kr

Tkr,klc
†
kl

ckr . (6)
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For a finite temperature the expectation values of the
occupation operators Nkl = c†

kl
ckl and Nkr = c†

kr
ckr are given

by the Fermi–Dirac distribution

〈Nkl,r 〉 = f (Ekl,r) = 1

1 + e(Ekl,r −E l,r
F )/kB T

. (7)

Now we consider tunneling within the single-electron picture
in the case when a bias voltage V is applied to the right
side (figure 2(b)). It is assumed that the systems remain
approximately in thermal equilibrium, so that the one-particle
distributions (7) apply, but with different Fermi energies E r

F −
E l

F = eV . The transition rate from an initial state kl to a final
state kr is treated as a scattering process using Fermi’s golden
rule. The total tunneling rate is then given as a sum over all
pairs of the states kl, kr:

�+(V ) = 2π

h̄

∑
kl,kr

|Tkl,kr |2 f (El)(1 − f (Er))δ(El − Er), (8)

where the matrix elements of the tunneling Hamiltonian are
given by Tkl,kr = 〈kr|Ht|kl〉. In the case of a relatively
high barrier it is usually a good approximation to consider all
elements of the tunneling matrix as constant T0. In addition, the
sum over momentum can be converted to a sum over energy.
Since the main contribution to the sum comes from the range
of energies near the Fermi energy, one can also consider the
density of states as a constant both in the left and right particle,
Dl0 and Dr0. After one integration the expression for the
tunneling rate in equation (8) becomes

�+(V ) = 2π

h̄
|T0|2 Dl0 Dr0

×
∫ ∞

Ecm

dE f (E − E l
F)[1 − f (E − E r

F)], (9)

where Ecm is the higher of two minimal conduction energies.
Similar calculations can be done for the tunneling rate in the
opposite direction and eventually the net current I (V ) through
the junction is obtained as the difference

I (V ) = e[�−(V ) − �+(V )]
= 2πe

h̄
|T0|2 Dl0 Dr0

×
∫ ∞

Ecm

dE [ f (E − E r
F) − f (E − E l

F)]. (10)

Choosing the Fermi energy of the right nanoparticle as
zero energy, we have E l

F = −eV . In the limit when the
minimum energy is far below the Fermi energy, the integral
in equation (10) can be solved analytically

lim
Ecm→−∞

∫ ∞

Ecm

dE [ f (E) − f (E + eV )] = eV . (11)

Hence the I (V ) characteristic of a single tunneling junction
appears to be ohmic:

V = I Rt, Rt = h̄

2πe2|T0|2 Dl0 Dr0
, (12)

where the resistance is given by the quantum tunneling
resistance Rt.

For our purposes in this work we now consider a
generalization of the formula (8) for the case where the
transition occurs through a junction between two nanoparticles,
which are placed within a large system of N nanoparticles. We
can describe the state of such a system with the number of
electrons on each nanoparticle {n} ≡ {n1, n2, . . . , nN }. The
change in the energy of the whole system before and after a
single tunneling process at the (i → j) junction is then

�Ei→ j = E{n1, . . . , ni − 1, . . . , n j + 1, . . . , nN }
− E{n1, . . . , ni , . . . , n j , . . . , nN }. (13)

Using the golden rule approximation, the tunneling rate
through this junction can be written as

�i→ j (V ) = 2π

h̄

∑
ks ,k f

|Tks ,k f |2 f (Es)

× (1 − f (E f ))δ(Es − E f + �Ei→ j), (14)

where s and f refer to the initial and the final state of the
nanoparticle system. Assuming the same approximations as
above, the tunneling rate becomes

�i→ j (V ) = 1

e2 Rt,i→ j

∫ ∞

Ecm

dE f (E)[1 − f (E + �Ei→ j)],
(15)

where Rt,i→ j is given in equation (12), in which now the
parameters apply for the particular junction i → j . Using
the following property of the Fermi function

f (E)[1− f (E+�Ei→ j)] = f (E) − f (E + �Ei→ j)

1 − e−�Ei→ j /kB T , (16)

the integral in equation (15) can be solved using (11), which
gives

�i→ j (V ) = 1

eRt,i→ j

�Ei→ j/e

1 − e−�Ei→ j /kB T . (17)

Under the conditions of the Coulomb blockade, equation (17)
gives the final expression for the tunneling rate through
the junction (i → j) in the system of N nanoparticles
at the potential V . It should be stressed that the energy
difference �Ei→ j following the tunneling at each junction
(i → j) depends on the energy of the whole system, due
to the long-range electrostatic interactions. Other processes
may contribute at the local scale of a single junction and
modify the local tunneling resistance Rt,i→ j . In general the
resistance may depend not only on the material, size and
shape of the nanoparticle, but also on the temperature [65],
external magnetic field [66] and the distance between the
nanoparticles [67]. Generally, the tunneling resistance
increases exponentially with distance [67, 32]. As will be made
clear later (see section 4), in our numerical model the tunneling
resistance appears as a parameter which enters the timescale of
the tunneling processes.

2.3. Single nanoparticle conduction

To illustrate the Coulomb blockade effect in a simple case, here
we consider a system consisting of a single nanoparticle on a
substrate which is placed between two metal electrodes (shown
in figure 3). The tunneling junctions between the electrodes
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Figure 3. Single nanoparticle on a substrate and between two electrodes. The equivalent circuit of the system under voltage V is shown on the
righthand figure.

and the nanoparticle can be characterized by the capacitance C
and the tunneling resistance Rt. The substrate (gate electrode)
is at the potential Vg and is coupled to the nanoparticle through
a capacitor Cg. We assume infinite tunneling resistance along
this junction. The equivalent circuit scheme with the bias
potential V between the electrodes is also shown in figure 3,
right.

For this circuit capacitor charges are given by

Q1 = C(	 − V ), Q2 = C	, Qg = Cg(	 − Vg),

(18)
where 	 is the potential of the nanoparticle. During
the tunneling process an integer number of electrons n is
accumulated on the nanoparticle. Hence the charge of the
nanoparticle Q = −ne is expressed as

Q = Q1 + Q2 + Qg = C(2	 − V ) + Cg(	 − Vg), (19)

from where the potential is found as

	 = Q + CV + CgVg

2C + Cg
. (20)

Using equation (20) and expressing the energy as E =∫
	(Q) dQ + Ee, where Ee denotes the energy of the

electrodes, we can write the electrostatic energy of the system
as function of the number of electrons on the nanoparticle:

E = Q2/2

2C + Cg
+ Q(CV + CgVg)

2C + Cg
+ nleV , (21)

where nl is the number of electrons on the left electrode.
Therefore the energy change associated with the electron
tunneling from the left electrode to the nanoparticle is

�E+
1 = Qe

2C + Cg
+ e2/2

2C + Cg
+ CV + CgVg

2C + Cg
e − eV , (22)

and similarly for the tunneling from the nanoparticle to the
right electrode

�E+
2 = − Qe

2C + Cg
+ e2/2

2C + Cg
− CV + CgVg

2C + Cg
e. (23)

Assuming that the system is at zero temperature and that
�E+

1,2 < 0, equation (17) gives the respective tunneling rates
on the two junctions as

�1,2 = −�E+
1,2/Rte

2. (24)

Here the same tunneling resistance Rt = R is assumed for
both junctions. The equilibrium state in the tunneling process
is attained when the rates are equal, i.e., �1 = �2. Setting the
gate potential to zero Vg = 0, the charge on the nanoparticle is
expressed as

Q = CgV

2
. (25)

Now, combining the above expressions, we find the current
through the system as

I (V ) = −�E+
1,2

Re
= V

2R
− e

R(Cg + 2C)
. (26)

Therefore, in the case of single-electron tunneling through
junctions with a single nanoparticle between the electrodes the
I (V ) dependence remains linear (ohmic conduction). This
result serves as one of the benchmark calculations in the
numerical implementation (see section 4). As we will show in
this work, the nonlinearity in the current–voltage relationship
arises due to the spatial arrangement of many nanoparticles
between the electrodes in two-dimensional nanoparticle films.

2.4. Electrostatic energy of a nanoparticle network

In this section we briefly describe a generalization of
the electrostatic energy and the tunneling rates, to an
ensemble of capacitively coupled nanoparticles between the
electrodes [51, 53–56]. Here we systematically consider
nanoparticle assemblies with a general topology, which is
captured by the adjacency matrix of the graph Ai j (mapping
of a given structure of the nanoparticle assembly onto a
mathematical graph as described in section 3). In the derivation
of the electrostatic energy and the energy changes due to
single-electron tunneling between pairs of nanoparticles in the
network, we highlight the main expressions that are relevant
for the numerical implementation of the model in section 4.

The expression (19) for the charge of a single nanoparticle
is generalized here for the case of a nanoparticle within an
ensemble of N nanoparticles as follows

Qi =
∑

j

Ci j (	i − 	 j) +
∑

μ

Ci,μ(	i − 	μ), (27)

where Qi and 	i are the charge and the potential of the
i th nanoparticle, Ci j is the capacitance between the i th and

6
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j th nanoparticle, Ci,μ is the capacitance between the i th
nanoparticle and the electrode μ ∈ {+,−, gate}, and 	μ is
the potential of the electrode μ. The system of equations (27)
for all nanoparticles in the ensemble i = 1, 2, · · · N can be
written in a matrix form and formally solved for the vector Φ:

Q = MΦ − Cμ	μ → Φ = M−1Q + M−1Cμ	μ, (28)

where M is the capacitance matrix, with the elements defined
by

Mi j = δi, j

(∑
k

Cik +
∑

μ

Ci,μ

)
− Ci j . (29)

Then the energy of the nanoparticle ensemble can be written
as [51, 53]

E = 1
2 Q† M−1Q + Q · Vext + Qμ	μ, (30)

where the potential at each nanoparticle is given by

Vext = M−1Cμ	μ, (31)

and Qμ denotes the charge on the electrode μ. In the general
case that we consider here, the geometry of the ensemble is
determined by the adjacency matrix with the binary elements
{Ai j}, which enter the capacitance matrix as follows:

Mi j = δi, j

(∑
k

C Aik +
∑

μ

Ci,μ

)
− C Ai j . (32)

We assume for the moment that the capacitances between all
pairs of neighboring nanoparticles are equal and given by a
constant C .

The system is driven by increasing the potential at one of
the electrodes, which causes tunneling of the electrons from the
electrode towards nearby nanoparticles and further through the
system, by overcoming the Coulomb blockade at the junctions
between the nanoparticles. Due to the long-range electrostatic
interactions, tunneling of an electron at a single junction (i →
j) leads to energy changes over an extended area. Technically,
these effects are included via the inverse capacitance matrix
in the first two terms of equation (30). For our numerical
purposes, here we write separately the energy changes in these
two terms, which we denote as �E (1) and �E (2), respectively.

Tunneling of a single electron from the nanoparticle a to
the neighboring nanoparticle b causes changes in the vector of
charges as Q′

i = Qi + δbi − δai , where δai is the Kronecker
delta. Hence the change in the first energy term �E (1)(a →
b) ≡ E (1)′ − E (1) can be written as follows:

�E (1)(a → b)

= 1
2

∑
i j

(Qi + δbi − δai)M−1
i j (Q j + δbj − δa j)

− 1
2

∑
i j

Qi M−1
i j Q j . (33)

Using the property of the capacitance matrix that M−1
i j = M−1

j i ,
the expression (33) becomes

�E (1)(a → b) =
∑

i

Qi (M−1
ib − M−1

ia )

+ 1
2 (M−1

aa + M−1
bb − M−1

ab − M−1
ba ). (34)

Similarly, we find the change in the second energy term
�E (2)(a → b) ≡ E (2)′ − E (2) following the tunneling of an
electron from a → b:

�E (2)(a → b) =
∑

i

(Qi + δbi − δai)V ext
i −

∑
i

Qi V
ext

i

= V ext
b − V ext

a . (35)

Note that the tunneling process is biased in the direction
of decreasing potential, however tunnelings in the reverse
direction may occur and need to be considered.

Both energy terms have a contribution due to the tunneling
processes between the electrodes and the nanoparticles in their
vicinity. For example, for a single-electron tunneling between
the electrodes (denoted as ±) and the nanoparticle a, causing
the charge update Q′

i = Qi ± δai , the energy changes in the
two terms are

�E (1)(a ↔ ±)

= 1
2

∑
i j

(Qi ± δai)M−1
i j (Q j ± δa j) − 1

2

∑
i j

Qi M−1
i j Q j

= ±
∑

i

Qi M−1
ia + 1

2 M−1
aa , (36)

and

�E (2)(a ↔ ±) =
∑

i

(Qi ± δai)V ext
i −

∑
i

Qi V ext
i

= ± V ext
a . (37)

For practical purposes, introducing the variable

Vc ≡
∑

i

Qi M−1
ic , (38)

we can then write the expressions (33) and (36) in more closed
forms:

�E (1)(a → b)

= Vb − Va + 1
2 (M−1

aa + M−1
bb − M−1

ab − M−1
ba ), (39)

and
�E (1)(a ↔ ±) = ±Va + 1

2 M−1
aa , (40)

which are suitable for the numerical implementation. In
summary, after the tunneling process occurs, the updated
variable V ′

c can be calculated from the previous one as follows:

a → b: V ′
c = Vc + M−1

bc − M−1
ac , (41)

a ↔ ±: V ′
c = Vc ± M−1

ac . (42)

For simplicity, in the numerical model we take the
capacitance Ci,gate = Cg between a nanoparticle and the
substrate (gate electrode) to be equal for all nanoparticles.
Similarly, the capacitances between the ± electrodes and
the neighboring nanoparticles is taken to be the same as
the interparticle capacitance C . In the limit when C �
Cg the diagonal elements of the capacitance matrix M
are much larger compared to the off-diagonal elements.
The off-diagonal elements of the inverse matrix M−1 fall
off exponentially, which allows one to use the nearest-
neighbor approximation [51], specifically for calculations of
the quantities Vc in equations (41) and (42) in this limit.
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In our numerical model in section 4, for simulations
of the tunneling processes in the nanoparticle assemblies,
we will systematically refer to equations (35) and (39) for
tunneling between pairs of nanoparticles (a → b), and to
equations (37) and (40) when the tunneling occurs between
a nanoparticle and the electrodes (a → ±). As will be
made clear later, in our numerical implementation we can
treat the most general case including a range of values of the
capacitances C and Cg beyond the limit C � Cg. In addition,
a nonuniform distribution of the capacitances Ci j and Ci,gate

can be easily implemented. In order to clearly determine the
role of topology in the electron transport through complex
nanoparticle networks, we will discuss in detail cases with only
two constant capacitances, C and Cg, as introduced above.

Since the early work of Middleton and Wingreen [51],
several types of theoretical model were considered in the
efforts to understand the charge transport through nanoparticle
arrays and the occurrence of scaling at the threshold
voltage [57, 54, 56]. The numerical implementation of these
models are chiefly related to regular arrays, possibly with
charge disorder and weak structural disorder. It should be
stressed that in this work we consider a generalization of
the Middleton and Wingreen [51] model of single-electron
tunneling, in which we incorporate the most general structure
of the assembly via the concept of the nanoparticle network
topology. Hence, we recover the results of [51] in the limit
when the networks with a strictly regular structure (hexagonal
or triangular) are considered. Another approach based on
molecular dynamics simulations was proposed in [57]. The
equations of motion are numerically solved for a given number
of mobile charges, interacting via a Coulomb potential on a
regular array. The charges are subject to a driving force,
which is directly related to the applied voltage, and local
traps, which mimic the nonlinear threshold dynamics in the
Coulomb blockade conditions. The traps are implemented
as local threshold voltages. Although the theoretical concept
of random local voltages is much simpler compared to the
single-electron tunneling processes explained above, it gives
an insight into the conduction of disordered arrays. The
charge disorder is given by a Gaussian distribution of threshold
voltages over sites, while the structural disorder is introduced
by randomly selected areas where infinite voltage thresholds
apply to prevent the charge flow. Tracing the exact paths of the
moving charges in the molecular dynamics simulations reveals
the role of disorder in the charge transport.

3. Planar graph models of nanoparticle assemblies

As mentioned in section 1, one of the objectives of this review
is to substantiate the structure–dynamics interdependences in
nanoparticle films using theoretical arguments and quantitative
analysis. For this purpose, we describe the arrangement of
the nanoparticles by mapping them onto networks and using
graph theoretical methods. In recent years there has been
a great interest in the study of evolving networks and their
applications in physics and other areas of research (see recent
review [68]). In particular, graphs with a short diameter
(‘small-world’ networks) and scale-free networks with a

power-law connectivity [69, 68] have found many practical
applications in the study of complex dynamical systems, and
in particular, the transport processes on networks [70, 71]. In
order to model the conducting nanoparticle films by networks,
we note the following: first, the basic elements of the network,
nodes and links, are suitably identified as nanoparticles and
tunneling junctions, respectively. Furthermore, the interesting
realizations of conducting nanoparticle films are extended
structures with a large distance between the electrodes, and
the films are usually made up of monolayers of nanoparticles
on the substrates. This implies an embedded planar graph
structure. The self-assembled nanoparticle films often appear
to have an inhomogeneous structure with individual particles
or cells of particles attached to each other (see for example
figure 1). In modeling realistic structures of nanoparticle
films by networks several approaches can be used. Here
we describe two such approaches: (a) computer generated
planar graphs of a topologically matching structure, and (b)
data driven models using the actual particle positions on
the substrate. Directly modeling the assembly processes of
the interacting nanoparticles is yet another approach, which
belongs to a broad area known as colloidal aggregation
(see recent review in [16]). Due to limited space, we
will not discuss this approach in any detail here. Some
examples of nanoparticle films emerging in aggregations with
biorecognition binding potential, together with details of the
numerical implementation can be found in [60, 44].

3.1. Grown cell-aggregated structures

Recently we have introduced a model [72] to grow planar
graphs with a cellular structure, which match topologically
some of the nanoparticle films in [73, 38, 41]. In the model,
the aggregation of small cycles (or cells) of nanoparticles is
controlled by two parameters. Starting with a single cell, the
graph grows by attaching a cell of length n p to the boundary
of the already existing part of the graph. The exact attachment
rules are explained below. During the attachment we observe
two types of constraints: first, we preserve the planarity of
the graph at each growth step. In addition, for the reasons
to be made clear later, here we consider only graphs with a
fixed number of links per node k = 3, which is thus fulfilled
everywhere in the interior of the graph [72]. Therefore, the
distribution of cell sizes f (n p) is defined for n p � 3, for a non-
clustered graph we fix f (3) = 0. Moreover, the planar graph
of N nodes and E links obeys Euler’s law: Np + N = E + 1,
where Np is the number of polygons. Homogeneous plane-
filling structures are of special interest for us [74]. For this
class of graphs, the majority of nodes are in the interior of the
graph, i.e., are nodes with degree k = 3. Thus 3N ≈ 2E and
Euler’s law gives

6Np = 2E + 6. (43)

For a large system with distribution of cell sizes f (n p) we have

N = Np

∑
n p

n p f (n p)

3
, (44)

E = Np

∑
n p

n p f (n p)

2
. (45)

8



J. Phys.: Condens. Matter 22 (2010) 163201 Topical Review

(a) (b)

(c) (d)

Figure 4. Examples of the emergent cell-aggregated graphs. Open structures obtained for (a) μ2 = 0.5, ν = 0; (b) μ2 = 2, ν = 1; (c) μ2 = 0
(hexagons only), ν = 1. Example of a closed C60-like structure (d). ((a) and (b) reprinted with permission from [72]. ©2006, Springer
Science + Business Media.)

Substituting the second relation into (43), we have 6Np =
Np

∑
n p

n p f (n p) + 6. Then for Np � 1 one can find that the
average cell size is equal to six

〈n p〉 ≡
∑
n p

n p f (n p) = 6. (46)

Inspired by the cellular structures obtained in the labora-
tory [38, 41], in this work we use the log–normal distribution
of the cell sizes

f (n p) = 1

s
√

2πn p

e− ln2 n p/n0
2s2 , (47)

around an average hexagonal structure. With the condition (46)
the number of independent parameters in equation (47) is
reduced

〈n p〉 = 6 ⇒ n0 = 6e−s2/2, s2 = ln
(

1 + μ2

36

)
. (48)

The second central moment μ2 remains as the control
parameter in our model. The other parameter is related to the
attachment affinity of cells (defined below). At each growth
step a new cell, with size taken from the distribution f (n p),
is attached to the graph boundary according to the following
rules.

(i) In the aggregation only nodes with degree k = 3 can be
closed inside the graph.

(ii) A new edge (link) can be assigned only to nodes with
degree k = 2.

(iii) A potential nesting place is searched as an array of nodes
on the graph boundary with the degree k = 3 limited

with two nodes of the degree k = 2. The nested part of
the cell is identified with the nodes of the nesting string.
Therefore, the number of nodes to be added is n = n p − l,
where l is the length of the nesting string. We select
the nesting place with probability p ∼ e−νn , where the
parameter ν plays the role of the chemical potential for
the addition of n new nodes.

In figure 4 some emergent structures are shown, depending
on the parameters μ2 and ν. Note that when ν = 0 all
nesting places on the graph boundary are equally probable.
Consequently, for small values of ν the emergent structures
appear to have a long fractal boundary. The situation resembles
the more familiar diffusion-limited aggregation, however, here
the cells of particles are aggregated instead of single particles!
In the case when ν is large, more compact plane-filling
structures occur, with the length of the boundary proportional
to the square root of the number of nodes. In the special
case for μ2 = 0 the aggregates consist of hexagonal cells
only, as shown in figure 4(c). Depending on the model
parameters and the course of the growth process, it may occur
that after some number of steps no nodes with degree two
remain. In that case the structure is closed for further growth
(according to rule 2) and the algorithm stops. Various forms
of closed structures can be grown in this way [61]. With the
right mixture of cells, one can obtain a closed structure of
the C60-like topology, shown in figure 4(d). In the study of
conduction processes we focus on open plane-filling structures.
The electrodes are placed on selected areas along the graph
boundary. Here we summarize certain topological properties
of these graphs, namely the path lengths and the betweenness
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Figure 5. Topological properties of the emergent cell-aggregated networks: (a) distribution of the lengths of the shortest paths on the
networks for fixed μ2 = 0.5 and several values of ν. Solid line represent a Gaussian with l0 = 23.5 and σ = 8.37. (b) Distributions of the
betweenness centrality of the links. (Data from [72].)

Figure 6. Construction of the conduction network from known positions of the nanoparticles and the electrodes: the junctions along which the
tunnelings are possible are indicated by the links.

centrality of nodes (or links), which are important for the
conduction process (see also [72, 75]).

Shortest path length between a pair of nodes s and t
is given as the number of links (nodes) occurring along a
topological shortest path [76] from s to t on the graph.

Betweenness centrality is a topological measure of the
importance of a node (or a link) on the graph. It is defined
by [76, 77]

CB(v) =
∑

s �=v �=t

σst (v)

σst
, (49)

where σst is total number of shortest paths between the nodes s
and t , and σst (v) is number of these paths which pass through
the node v. Betweenness of links is defined in an analogous
way. For inhomogeneous networks the distribution of the
betweenness of nodes can be substantially different from that
for links. In our case, however, there is no difference because
of the fixed degree k = 3 of the nodes.

In figure 5 we show the distributions of the lengths of the
shortest paths and the distributions of betweenness of links
for networks grown with a fixed parameter μ2 = 0.5 and
several values of the parameter ν. The size of these networks
is N ≈ 1000 nodes. The distributions are averaged over
100 sample networks for each set of the parameters. The
distributions of betweenness at the small scale strongly depend
on the parameter ν, related to different graph boundaries.
Similar conclusions hold for other μ2 values (not shown). The
meaning of the topological betweenness is illustrated for the
links of the graphs in figure 4: the width of each link represents
the computed betweenness of that link on the graph. For this
type of network the strongest lines connect the nodes with the

largest centrality measure. These links therefore can be the
most important for charge transport through the graph.

3.2. Nano-networks from the empirical data and assembly
models

Another type of network model, which we use for the
simulations of charge transport, is based on data on the
positions of the nanoparticles on the substrate. We assume
that the positions of the nanoparticles are known, e.g., either
via STM measurements or by statistical estimates based on the
parameters of the deposition process, or from the simulations
of the assembly process itself. In order to make a reasonable
nanoparticle network based on such data, it is crucial to
take into account that the tunneling resistance increases
(conductivity decreases) exponentially with distance between
the nanoparticles [49, 32]. Consequently, the probability
of electron tunneling decays and virtually vanishes at large
distances. Taking a sharp threshold, a distance called the
tunneling radius r , is a parameter which determines the
tunneling proximity of the nanoparticles in the ensemble. In
real films, r can be of the order of a few nanometers, depending
in part on the type of nanoparticles [32]. The nanoparticle
film network is then constructed by inserting a link Ai j = 1
between each pair of nanoparticles (i, j) which are separated
by less than the tunneling radius r from each other. Otherwise,
Ai j = 0. Also, when the shape and the positions of the
electrodes are known, we connect the nanoparticles with an
electrode if the distance between them is smaller than the
tunneling radius r . The procedure is illustrated in figure 6.
In our numerical approach, the tunneling radius r appears as

10



J. Phys.: Condens. Matter 22 (2010) 163201 Topical Review

(a) (b)

Figure 7. A three-dimensional rendering of the nanoparticle networks used in the charge transport simulations. Networks are constructed
using the exact coordinates of the nanoparticles from [26]. The two structures correspond to different nanoparticle coverage (a) 40%, NNET1,
and (b) 80%, NNET2. (Reprinted by permission from [58]. ©2007, American Chemical Society.)

Figure 8. Distribution of the lengths of shortest paths (a) and betweenness centrality (b) for the nanoparticle networks NNET1 and NNET2
shown in figure 7.

an additional parameter of the network model. Two examples
of the nanoparticle networks constructed with these rules,
and used in the simulations of charge transport in section 5,
are shown in figure 7. The coordinates of the nanoparticles
are taken from the simulations of nanoparticle assembly
with dewetting using the model described in [78, 26]. The
two structures correspond to different values of nanoparticle
coverage, 40% (NNET1) and 80% (NNET2), respectively. As
discussed in [58], the properties of these assemblies are closely
related to those observed in the experiment [26].

The results of topological analysis of these two networks
are shown in figure 8. The distribution of the lengths of
the shortest paths, figure 8(a), shows a strong dependence on
the coverage. The network NNET1 with smaller coverage
appears to have large inhomogeneities in the structure.
Consequently, the structure of its shortest paths is changed,
and the average length of the paths increased in comparison
with the more compact network NNET2. The structural
inhomogeneity also affects the betweenness centrality of the
links, figure 8(b). For the compact network NNET2 the
distribution of betweenness exhibits some similarity to the
one for cell-aggregated networks in figure 5(b). On the
other hand, the topological inhomogeneity with the large
voids in NNET1 induces a number of ‘bottle necks’—links
with large betweenness centrality, leading to the tail in the

distribution. The topology of conduction paths, discussed
below in section 5, is closely related to the shortest paths on
these networks.

4. Numerical model

4.1. Implementation of the algorithm

Our implementation of the single-electron conduction model
is based on the analytical expressions derived in section 2.4.
We start with a specified nanoparticle network, given by its
adjacency matrix Ai j , which is constructed as explained above.
Choosing the positions of the electrodes, we also connect the
electrodes with the adjacent row of nanoparticles found within
a tunneling radius r . We assume that at the initial time t = 0
the system is not charged (all charges at the nanoparticles Qi

are set to zero) and apply a constant biased potential 	μ on the
electrodes. In the initialization we calculate the inverse of the
capacitance matrix M and the components of the vector Vext,
given by equations (32) and (31), respectively.

The algorithm is based on successive steps in time, where
each step corresponds to one tunneling event. Using the
procedure described in section 2.4, in each step we calculate
the energy change for an attempted tunneling along every
junction (i → j) in the network, including the junctions with
the electrodes. From the computed energy change, we then
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calculate the tunneling rate �i j , in view of the expression (17).
We implement continuous time dynamics by introducing the
tunneling time distribution

fi j(t) = �i j e−�i j t . (50)

Technically, the tunneling time ti j is then a random number
generated from this distribution. Calculating the cumulative
distribution

Fi j (t) = 1 − e−�i j t (51)

and solving the equation Fi j (ti j) = x for ti j , with a uniform
random number x ∈ [0, 1], gives the tunneling time for the pro-
cess associated with the computed energy change �E(i → j):

ti j = − log(1 − x)

�i j
. (52)

Note that �i j may also change with time, following the
tunneling events. Thus the appropriate distribution of the
tunneling times is given by an integral, i.e.,

fi j(t) = �i j (t ′)e− ∫ t
0 �i j (t ′) dt ′

, Fi j(t) = 1 − e− ∫ t
0 �i j (t ′) dt ′

,

(53)
leading to an integral equation for ti j :

∫ ti j

tk0

�i j(t ′) dt ′ = − log(1 − x). (54)

In our case the tunneling rates are part-by-part constant
functions between the tunneling event. Therefore we can
convert the integral (54) into the sum over time intervals
between successive tunnelings, which occur at unevenly
spaced times tk , k = 1, 2, 3, . . .. Consequently, assigning a
uniform random number xi j to each junction, we determine the
time delay �ti j until the next tunneling at a particular junction
(i → j) by solving (54):

�ti j = − log(1 − xi j) − ∑′
k>k0

�tk�i j(tk)

�i j(t)
, (55)

where the sum is over all tunnelings in the entire system since
the last tunneling event occurring at the junction (i → j) at
the moment tk0 . �tk denotes the intervals between such events,
and their effects on the tunneling rate at the junction (i → j)
are taken via �i j (tk). Solving the set of equations (55) for all
junctions in the network, we then find the junction which has
minimal �ti j and perform the tunneling along that junction.
Following the tunneling event, we update the vectors Q, Vc for
the whole system and also assign a new random number xi j to
that junction. Then the whole process is repeated to find the
junction at which the next tunneling will occur, and so on.

In this stochastic process the electrons start entering the
system of nanoparticles when the bias voltage is applied at
the electrodes. The number of electrons on a nanoparticle
Qi increases in time, depending on the actual value of the
voltage. For each ramp of the voltage, the number of electrons
at each nanoparticle inside the system stabilizes after some
relaxation time. For voltages below a threshold VT, the
charged nanoparticles form a pattern with a moving front.
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Figure 9. Moving fronts of charges in strips of regular nanoparticle
arrays shown for several values of the voltage below the threshold
V < VT, increasing from the bottom to top. (Reprinted with
permission from [60], ©IOP Publishing.)

The situations for several values of the voltage are illustrated
in figure 9 for the case of strips with a regular nanoparticle
array. The moving front reaches the zero-voltage electrode
when V ∼ VT, depending on the structure of the network
and distance between the electrodes. Then the current can be
detected as the number of electrons tunneling to the electrode
per time unit.

Schematically, the main steps in the algorithm are:

Input: graph, parameters
Calculate capacitance and

inverse capacitance matrix
Initialize vectors Q, Vc, V+

with zeros
Initialize time t=0
While(V+ < V_{max})
While(enough sampled data)
Calculate vector Vc
Calculate energy change for

all junctions
For each link
t(i,j)=next random from

distribution pij(t)
End For
Process the tunneling with

smallest time t(i,j)
Increment time t=t+t(i,j)
If(relaxation is done)
Sample data of interest

End If
End While
Increase V
End While

We use LU decomposition to calculate the inverse
capacitance matrix. This algorithm require N3 computational
steps, where N is the size of the matrix, in our case given
by the number of nanoparticles. The rest of the code requires
N2 operations per each tunneling event. Hence, the algorithm
complexity is O(N3 + M N2), where M denotes the number
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Figure 10. Simulated current–voltage curves for: (a) single nanoparticle between the electrodes and comparison with the exact expression in
equation (26), shown by solid line; (b) linear chain of N = 1000 nanoparticles; (c) regular triangular array with quenched charge disorder and
several sizes of sample; (d) regular hexagonal array of nanoparticles and several sizes of electrodes (the structure is shown in figure 4(c)).

of processed tunneling events. In the case when C � Cg

the algorithm can be simplified by neglecting the off-diagonal
elements beyond the nearest-neighbor ones, as discussed
above. Then a number of O(N) operations per each tunneling
is needed, reducing the complexity of the whole algorithm to
O(N3 + M N).

Within the numerical implementation of the tunneling
processes introduced above, different types of nanoparticle
assemblies and realistic situations can be adequately taken into
account. In particular:

• Topological disorder is included in the adjacency matrix
of the nanoparticle network;

• Charge disorder, seen as the offset charges at nanoparti-
cles, is incorporated by preparing a vector of quenched
charges 0 � qi < e from a uniform random distribution. It
shifts the actual charge at a nanoparticle as Qi → Qi +qi ,
thus changing the local charge/voltage balance and affect-
ing the tunneling condition;

• Temperature effects on the tunneling rate �i j are included
in the expression (17);

• Capacitance variations at the local level, i.e., due to
different sizes (and capacitances) of each nanoparticle can
be taken, for instance with a Gaussian distribution around
an average C . Also, various limits beyond the familiar
C � Cg can be studied;

• Quantum resistance variations, i.e., due to different
types of linkers between individual nanoparticles in the

assembly, or variations in the distances (distribution of
the tunneling radius), can be easily implemented and their
effects analyzed.

In this work we focus on the most striking features occurring
due to the topology of the nanoparticle films and on
comparison between the topological and charge disorder. For
this purpose, we set the temperature to zero, which simplifies
the expression (17) to

�i→ j (V ) = 1

e2 Rt,i→ j
�Ei→ j . (56)

To speed up the algorithm we often consider the case C � Cg

(see also [61, 75, 58, 60]).

4.2. Benchmarks and regular arrays

The numerical model is first tested with a few benchmark
calculations, i.e., conduction through a single nanoparticle
between the electrodes (cf figure 3) and an 1D nanoparticle
array. We also compute the I (V ) curves for two regular
2D structures (the results are shown in figure 10): the
triangular super-lattice, and a hexagonal nanoparticle array,
which are useful for comparisons with the more general
structures studied later in section 5. In all calculations we
assume that R, C, and Cg are constant and that 	− =
	gate = 0, while 	+ = V . We also fix the ratio
C/Cg = 10−4, so the condition C � Cg is well satisfied.
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For simplicity, the capacitance between electrodes and the
neighboring nanoparticles is assumed to be equal to the
interparticle capacitance C . A uniform random distribution
of the charge disorder is assumed in the case of the triangular
array, corresponding to the situation in the experiment studied
in [54]. Note that the characteristic timescale in this stochastic
process is given by RCg, so the current in our simulations is
suitably expressed in the units of e/RCg.

In the case of a single nanoparticle connected with
tunneling junctions to both electrodes and capacitively coupled
with the gate electrode, as shown in the figure 3, the simulated
I (V ) curve is in full agreement with the theoretical prediction
in equation (26). The curve is linear beyond the threshold
voltage. A linear behavior is also obtained in the case of
a 1D nanoparticle array, as expected. In figure 10(b) we
show the dependence of the current I on the reduced voltage
(V − VT)/VT, where VT is the threshold voltage. In this case
we find VT ∼ N , the number of nanoparticles in the chain.

In the other two benchmark cases shown in figures 10(c)
and (d) nontrivial effects of both the 2D structures and the
charge disorder are demonstrated. The case of the regular
triangular array with charge disorder, shown in figure 10(c),
represents the typical form of the I (V ) curve, which we will
find in many situations in section 5. Three regions with
different conduction regimes are visible: small noise below the
threshold voltage VT, a nonlinear regime for a range of voltages
V � VT, and eventually bending towards a linear conduction
regime for very large voltages. In this case the nonlinear
regime can be fitted by the equation (1) with the exponent
ζ ≈ 2.3, in good agreement with the experiment in [54]. We
simulated different sample sizes �E × �S, as indicated in the
legend, where �E and �S are the length along the electrodes
and the distance between the electrodes, respectively. As
figure 10(c) shows, the size of the system slightly affects the
slope of the curve above the threshold, however, the nonlinear
region persists. In the case of the regular hexagonal structure
without charge disorder the results show nonlinear curves with
an even larger exponent ζ ≈ 3. The different curves here
are for point electrodes (E = 1) and another two lengths of
electrodes, expressed as the fraction of the perimeter E/L,
indicated in figure 10(d).

5. Single-electron conduction in classes of
nanoparticle networks

In this section and in section 6 we apply our numerical model
to simulate the charge transport in complex structures of
nanoparticle films, represented by nano-networks. Besides the
topology of the networks, the emphasis is on the underlying
long-range correlations which lead to the nonlinearity in the
I (V ) curves. Specifically, we consider in parallel two types of
network structures described here.

• Plane-filling cellular network (CNET), grown with the
rules described in section 3.1, with parameters ν = 1 and
μ2 = 0.5. This type of network has weak topological
disorder in view of the small dispersion of cell sizes
around the hexagonal structure. In addition, they are
locally homogeneous, namely each node in the interior

of the network has exactly three links (possible ways of
path branching). These networks are also suitable to
study charge disorder effects. For this case, a uniformly
quenched distributed random charge 0 � qi < 1
is associated to each node in the network between the
electrodes.

• Two networks named NNET1 and NNET2, shown in
figure 7, representing nanoparticle films made by the
evaporation methods, as described above. These networks
have an inhomogeneous local structure with different
dispersions of the number of links per node (cf insets to
figures 12) and various degrees of topological disorder at
large scale, which is related to the nanoparticle coverage.

All simulations are done under the same conditions as
described in the case of benchmarks. The results for the
I (V ) curves are always presented on a double-logarithmic
plot with a suitably normalized current and the reduced
voltage (V − VT)/VT, where the threshold VT refers to each
particular network. In these plots the nonlinearity exponent
ζ is immediately identified by the slope of the I (V ) curve
for V � VT. We first show the simulation results for the
I (V ) curves and identify relevant conduction paths in these
networks. Further analysis of the conduction process is done
in section 6.

5.1. I (V ) characteristics in nanoparticle networks

The current–voltage characteristics for the cell-aggregated
network CNET with and without charge disorder are shown
in figures 11(a) and (b). The simulations are done for two
network sizes (the number of nanoparticles), N = 1000 and
2000. In each case two types of electrodes are considered:
point electrodes and electrodes that extend over 1/8th of the
perimeter along opposite sides of the sample (see figure 13(a)
below). It is clear that on the CNET structure the I (V )

dependence is nonlinear above the threshold. However, in
the presence of charge disorder the exponent is considerably
smaller, ζ ≈ 1.33, compared with ζ ≈ 2.5 obtained on the
same network without charge disorder. The system size and the
size of the electrodes, on the other hand, do not have profound
effects on the I (V ) curves.

In figures 12(a) and (b) are shown the I –V characteristics
obtained by simulations of the charge transport without
charge disorder on two nanoparticle film networks, NNET1
and NNET2. In these networks, originating from different
nanoparticle coverages, topological differences occur both
on the local and global scale. Specifically, these are the
dispersions of the number of links per node, as shown in
the insets to figures 12, as well as the global measure of
path lengths and the centrality, shown in figure 8. These
topological features appear to affect the conduction processes
on these networks, leading to different ζ exponents, as well
as other characteristics studied in section 6. The strong
topological inhomogeneity in the case of NNET1, yields larger
nonlinearity exponent ζ ≈ 3.9, which is in good agreement
with the experimental results obtained in nanoparticle films
prepared with non-equilibrium evaporation methods [58]. On
the other hand, for the more homogeneous structure of NNET2,
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Figure 11. Simulated I (V ) curves for the cell-aggregated nanoparticle network CNET (a) with random charge disorder; (b) the same network
without charge disorder. Symbols indicate the two sizes of the networks and the electrodes, as explained in the text.

Figure 12. Simulated I (V ) curves on the nanoparticle film networks (a) NNET1, and (b) NNET2. The network structures are shown in
figure 7. Insets: distributions of the number of links per node. (Data replotted from [58].)

we find the exponent ζ ≈ 2.7, more similar to the case
of regular arrays without charge disorder studied above (see
section 4.2). However, it is interesting to note that the range of
relative voltages where the nonlinearity can be observed is by
an order of magnitude smaller in the strongly inhomogeneous
network.

5.2. Geometry of the conduction paths

In our model the electron tunnelings inside the sample occur
simultaneously, driven by the voltage. When the current is
established through the sample, however, the nature of charge
flow changes. In this regime, the charge flow is mainly
contained in several most important channels (conduction
paths). Within our numerical model such paths can be
identified on the nanoparticle network, and their topological
and dynamical properties studied in detail. The number of
electrons that tunnel along each junction on the network is
monitored. This quantity is defined as the flow, fi j , at the
junction (i, j). Then the sequences of the junctions which
carry most of the charge between the electrodes are found.
Their geometry strongly depends on the topology of the
underlying nanoparticle network and on the size and position
of the electrodes. For instance, in figures 13(a) and (b) such

paths are visualized with thicker/darker lines in the case of the
cellular network CNET with the point-like electrodes, and in
the nanoparticle network NNET1 with the extended electrodes.
The number of conduction paths increases and the merging
of paths occurs with a further increase of the voltage. The
charge flow at the end point of a particular channel affects the
number of connected channels behind it, causing a larger area
to drain along that channel. Consequently, the current increases
beyond the linear I (V ) dependence. Hence, the geometry and
the dynamics along the conduction paths are crucial for single-
electron conduction in these systems.

The topology of the conduction paths is closely related
to that of shortest paths, or ‘topological flow’, studied above
(cf figure 8). In fact, the first channels to open at the threshold
voltage coincide with the shortest paths between the actual
positions of the electrodes. However, for V � VT the
dynamical (charge) flow differs from the topological flow in
view of the merging paths, as mentioned above, and to opening
of next-to-shortest paths, etc, when the voltage increases above
VT. A way to analyze the structure of the flow paths is to
construct the maximum flow spanning tree [75] of the network.
By definition, it is a spanning tree of the network with links
{ fi j}, in which each node is connected to the tree by its largest
flow link. In figures 14(a) and (b) we show the maximum flow
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Figure 13. Conduction paths through the nanoparticle networks: (a) CNET with point-like electrodes; (b) NNET1 with line electrodes along
the left and right boundaries. (Figure (b) reprinted with permission from [58]. ©2007, American Chemical Society.)

Figure 14. Maximum charge flow spanning trees for: (a) CNET with point electrodes, different voltage areas marked by colors; (b) part of the
NNET1 including the main channel, electrodes are marked with different dark colors.

spanning tree for the CNET, and for the upper third part of
the NNET1. In contrast to the topological flow (not shown),
the charge flow trees appear to have a more linear structure,
due to the dominant role of the electrodes. Notably, the most
important nodes in this process are placed along the backbone
of the tree.

6. Collective dynamical effects in the tunneling
processes on networks

In this section we further investigate the properties of the
conduction process along the conducting paths through the
networks CNET and NNET1 (figure 13). In particular, we
consider the time series of the dynamic activities at each node
(nanoparticle) and each link (junction between nanoparticles).
Defining several dynamical quantities, such as the charge
flow along individual junctions, the tunneling delay, and the
charge fluctuations on an individual nanoparticle and in the
whole sample, we investigate the local properties and long-
range correlations of the charge transport in these nanoparticle
networks.

6.1. Charge flow distribution

The charge flow fi j , mentioned above, is precisely defined as
the net number of electrons through the junction (i, j) in a
time window Twin. Specifically, for a given time window Twin

the fi→ j and f j→i are the number of electrons which tunnel

between the nanoparticles i and j in the direction of the arrow,
then the net charge flow through the link (i, j), its ‘dynamical
betweenness centrality’, is given as

fi j ≡ | fi→ j − f j→i |. (57)

The flow is computed for all junctions {(i, j)} on the network,
and the distribution P( fi j ) of the flow for both networks
are shown of figures 15(a) and (b). In both cases a broad
distribution is found, indicating uneven flow along different
links on the network. Apart from the region of small flow
values, both distributions can be fitted with the q-exponential
form

P(X) = Bq

[
1 − (1 − q)

X

X0

]−1/(1−q)

, (58)

which is often found in non-ergodic dynamical systems [79].
Note that the q-exponential form (58) in the limit of large
values of the variable X gives a power-law decay with the
exponent τ ≡ 1/(1 − q). The limit q → 1 corresponds
to the exponential function. The fit parameters for the flow
distribution in the case of the cellular network CNET are:
BQ = 2, X0 = 100, and q = 1.25, hence τ = 4.0. For
the nanoparticle network NNET1 we find: BQ = 80, X0 = 35,
and q = 1.14, corresponding to the exponent τ = 7.0.

6.2. Tunneling recurrence times

Another dynamical measure of the tunneling processes is
the statistics of time intervals �t between two successive
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Figure 15. Distribution of charge flow along the links (dynamical betweenness) averaged over all links in the network for (a) CNET and
(b) NNET1. Fit lines according to equation (58), see the text for details. (Data in figure (b) from [60].)

Figure 16. Distributions of time intervals �t between two successive tunnelings at a node (first-return-times) P(�t), averaged over the
network. Fits according to equation (58) (a) CNET, (b) NNET1. (Log-binned data.)

tunnelings at a given nanoparticle. In strongly correlated
dynamical systems, such as earthquakes [80–82], critical
sandpiles [83, 84] and financial market dynamics [85, 86], for
example, the distribution of the time intervals (referred to as
first return times, recurrence times, or waiting times) exhibits
a power-law tail, compatible with the long-range correlations
between the events.

In the simulations of the single-electron tunnelings in
the nanoparticle networks CNET and NNET1, we monitor
tunnelings at each nanoparticle in the system. The distribution
P(�t) of the time intervals between successive tunnelings is
determined for a fixed voltage V = 10VT and averaged over
all nanoparticles in the assembly. The results are shown in
figures 16(a) and (b). In both networks CNET and NNET1,
the distribution can be fitted with the q-exponential form in
equation (58) for large time intervals �t . The fit parameters
are: BQ = 0.2, X0 = 5 × 105, and q = 1.48 (or τ = 2.08) for
the cellular network CNET, and BQ = 0.5, X0 = 1 × 106, and
q = 1.4 with corresponding exponent τ = 2.5, in the case of
NNET1. These results indicate the occurrence of long-range
correlations in the tunneling events within the areas, which
drain along the conduction paths. The patterns of separate
lines for �t < X0 indicate the number of most active channels
established at that particular voltage.

6.3. Correlated charge fluctuations

Further insight into the nature of the charge transport is
gained by considering the time series of the number of
tunneling events and relating it to temporal charge fluctuations
at each nanoparticle in the system and at the electrode. For
both sample networks, CNET and NNET1, we simulate the
conduction under fixed voltage above the threshold, V =
10VT, and after a relaxation period we sample the time series.
The charge fluctuation at a given nanoparticle i with time
t is determined by the number of tunnelings ni (t) at that
nanoparticle within a given time window Twin. We find that
an appropriate time window can be taken as Twin = 4.11/〈�〉
for CNET, and Twin = 17.10/〈�〉 for NNET, relative to
the average tunneling rate 〈�〉 in the network. The time
series {ni (t)}, i = 1, 2, . . . , N are sampled for each node
(nanoparticle). The global noise signal NT (t) at the level of
the whole network is then calculated as the sum:

NT =
N∑

i=1

ni (t). (59)

The computed time series in our simulations for the
two network types appear to be fractal (see figures 17
and 18). Consequently, their power spectra defined by the
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Figure 17. For the cellular network CNET: charge fluctuations time series (lower panels) and their power spectra (upper panels, log-binned
data). Data corresponding to a single node (a) and to the whole network (b). Slopes: β � 1.2 and 1.2.

Figure 18. The same as figure 17, but for the nanoparticle network NNET1. Slopes: β � 0.33 and 1.0. ((b) reprinted with permission
from [60]. ©2009 IOP Publishing.)

expression (60), where Ns is the number of samples:

S(ν) =
∣∣∣∣∣

Ns∑
j=0

n j ei2π jν/Ns

∣∣∣∣∣
2

∼ ν−β, (60)

exhibit a power-law dependence for a range of frequencies ν.
The results in figures 17 and 18 show the time series and their
spectra at two levels: at a single node inside the network (left
panels) and the noise signal at the level of the whole network
(right panels in both figures).

It is remarkable that, in the case of the almost regular
cellular structure CNET, the correlations with the exponent
β � 1 already occur at a single nanoparticle inside the sample.
The same exponent β = 1.2 (within error bars) is found for
the global noise. This suggests that, once established, the
geometry of conduction paths does not vary in this type of
network structure (for fixed V ). The situation is different in
the nanoparticle network NNET1, which has strong topological
inhomogeneity. Here the exponents of the power spectra at

the local and global level differ significantly. Specifically,
weak correlations at a single nanoparticle lead to long-range
correlations of 1/ν type at the global level. In contrast
to the case of cellular networks such as CNET, and other
regular structures studied in [60], the appearance of long-range
correlations in topologically inhomogeneous nano-networks,
such as NNET1, indicates self-organized tunneling dynamics
between different conduction paths.

Certain hidden patterns of the dynamical behavior of
individual nodes on a complex network can be revealed
by the analysis of the dispersion of the multichannel time
series [87–89]. Here we consider the series {Qi (t)} of
charge fluctuations, sampled at each node i = 1, 2, . . . , N
in the network. They are closely related to the number of
tunnelings {ni(t)} studied above, specifically, the charge Qi (t)
at a nanoparticle i in a given time bin is determined by the
difference between the number of incoming and the outgoing
electrons at that particle within the time bin. Plotting the
standard deviation of the time series against its average value
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Figure 19. Scatter-plot of the standard deviations of the charge fluctuations time series on each nanoparticle plotted against the average charge
on it. Each point represents one node (nanoparticle) in a network (a) CNET, with homogeneous connectivity of nodes, and (b) NNET1, with
large topological inhomogeneity. Straight lines indicate the limiting slopes with μ = 1/2 and 1 defined in equation (61).

for each node, a pattern is obtained which exhibits a well
defined scaling law (see recent review with other different
dynamical systems in [90] and references therein):

σi ∼ 〈Qi 〉μ, (61)

with the exponent limited between two cases μ = 1/2 and
1. The results for the two networks, CNET and NNET1, are
shown in figures 19(a) and (b). In the case of the CNET
structure, a large number of nodes align along the direction
μ = 1/2, compatible with the random fluctuations pattern,
whereas in the inhomogeneous NNET1 a majority of nodes
follow a pattern with driven dynamical behavior, with the
exponent μ ≈ 0.86.

The long-range correlations in the charge fluctuations
along the conduction paths through the network manifest
themselves in the current which is measured at the electrode.
In the simulations, we sample the time series of the current
{I (t)}, which is precisely defined as the number of electrons
arriving at the low-voltage electrode within a given time bin
Twin. The temporal fluctuations in the current are induced
both by the geometry of conduction paths through the network
and charge fluctuations at nodes along these paths. Thus the
increments of the current �I (t) between two consecutive time
bins represent a suitable measure of the ‘acceleration’ of the
tunnelings along the paths. We study the current fluctuations
in the two network structures: NNET1 with strong topological
disorder and, for comparison, a fully regular triangular array
of nanoparticles with charge disorder. The current fluctuations
time series in these two networks are shown in figure 20(a).
The fractal structure of the time series is quantified in their
power spectra (upper panel in the same figure). Again, the
nature of the correlations in the charge fluctuations along
the paths leads to different current correlations in these two
network structures. Topological inhomogeneity contributes
to long-range correlations in the current fluctuations at large
frequencies, whereas only weak correlations can be detected
the regular arrays and at low frequencies. The fluctuation
patterns also affect the distribution of the current increments
P(�I ), shown in figure 20(b). The case of NNET1 shows
that large bursts (both positive and negative) in the current

fluctuations are probable when the topology of the conduction
paths varies. The distribution can be fitted with a q-
Gaussian [91, 92]

P(�I ) = BI

[
1 − (1 − q)

(
�I

D0

)2
]−1/(1−q)

, (62)

often found in complex dynamical systems with long-range
correlations, stock-market fluctuations and earthquake data
analysis. The value for the parameter q = 1.85 fits the data in
the case of NNET1, while for the triangular array with charge
disorder q = 1.14 is much closer to the normal distribution,
corresponding to the limit q → 1.

7. Remark on the conduction in multiscale networks

In this work we presented a microscopic model of conduction
with single-electron tunnelings through metallic nanoparticle
networks, where the capacitive coupling is the dominant
interaction. The tunneling junctions between nanoparticles
in the model are characterized by the tunneling rate, �i j ,
which is given by the global energy change following a
single-electron tunneling through the junction (i → j).
In the numerical model the quantum tunneling resistance
Rt appears as a relevant parameter which characterizes the
junction. Here we briefly comment how this model can be
used to estimate the structure effects on the conduction in more
complex nanoparticle assemblies, in which the structure differs
considerably at the local and mesoscopic scale.

In this respect, two types of inhomogeneity may arise.
In the first, the junctions between all nanoparticles are equal,
whereas the control parameters of the assembly processes vary,
such that the global pattern differs from the local one, as in
the theoretical examples in figures 4(a) and (b). A variety of
such multiscale structures can be found in experiments with
nanoparticle films prepared via evaporation methods (see [44]
and references therein). The other type of inhomogeneity that
we refer to is found when the linking between the nanoparticles
is mediated by biomolecules, nanotubes, nanowires, etc. In
this case the nanoparticle network (usually a small graph) can
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Figure 20. Time series of the current fluctuations I (t) (a) and the distribution of current increments P(�I ) plotted against �I for regular
array of nanoparticles with charge disorder (triang-wd), and for topologically disordered nanoparticle network (NNET1). (Reprinted with
permission from [60]. ©2009, IOP Publishing.)

Figure 21. Computer generated multiscale structure with (a) a coarse-grained network, and (b) an isolated junction as a string of nanoparticles
with different structure.

be quite homogeneous, however, the nature of the conduction
along each complex junction could be different. The
conductance (resistance) of each junction may be computed
using microscopic theories, for example density functional
theory [31] or other methods.

In the multiscale structure (an example generated
numerically is shown in figures 21(a) and (b)), the conduction
model can be applied at two levels: first at an individual
junction, and then the results of each junction used as entries
at the coarse-grained network. On the mesoscopic scale,
the structure is represented by a simple graph marked with
junctions and ‘large’ particles at the branching points. The
coarse-graining topology is described by the adjacency matrix
A(CG)

i j . On a smaller scale, however, each junction consists of
many particles with a particular spatial ordering, representing
an effective resistor between the branching points of the coarse-
grained network, see figure 21(b) as an example. Hence, the
conduction properties along such a junction can be computed
within our model of section 2.4, or using other methods
appropriate for different types of junction. The results are
the nonlinear Ii j(V ) dependence with a local exponent ζi j and
a local value of the threshold voltage Vi j for each complex
junction. Therefore, each link on a coarse-grained network can
be characterized by a nonlinear current

Ii j ∼ (V − Vi j)
ζi j , (63)

depending on the microscopic structure of the junction. Now,
assuming that the coarse-grained network can be treated

as a capacitively coupled system with effective (nonlinear)
junctions, we can further apply the methods developed in the
above sections to compute the conduction properties at the
large scale. At each junction on the coarse-grained structure
(i.e., between ‘large’ particles in figure 21(a)), we have a
different tunneling rate, given by

�i j = (	i − 	 j − VT i j)
ζi j /e, (64)

where 	i − 	 j is the potential difference between ‘large’
particles i and j . The vector of potential Φ is defined by

Φ = M−1
(CG)Q + M−1

(CG)CμΦμ, (65)

where the capacitance matrix for the coarse-grained structure
is M(CG).

The results of the simulations (not shown) suggest that
the topology of the coarse-grained network may enhance the
nonlinearity which is present at the local scale. For instance,
starting with a constant exponent ζi j = 2.5 as the nonlinearity
exponent at each junction string and assuming the structure of
the CNET type (see figure 4(b)) as a coarse-grained network,
we find an increased exponent ζ = 2.8 for the I (V ) curve at
the global scale.

Self-similar cellular structures, such as the example
shown in figure 1(d) and in [44], represent another interesting
case, where the fractal patterns occur at different scales. From
the point of view of the conduction, we expect that the
broad distribution of voids occurring in these patterns will
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affect the conduction paths and, thus, the scaling exponents.
Mapping the known structure onto nanoparticle networks
and implementation of the electron tunneling conduction, as
described in this work, is entirely applicable to these type of
structures, once the positions of the nanoparticles are inferred.
For the theoretical analysis of the structure–conduction
interdependences, however, modeling of the structure, e.g., via
cellular-aggregation process as in section 3.1 could be useful.
Within these models the quantitative control of the topology of
the assembly is achieved through the control parameters. For
instance, structures such as the one in figure 1(d) can be grown
by planting several seeds for the branched aggregates with the
parameter ν = 0, and specified μ2 (a special case with loop
size � = 1 corresponds to aggregation of individual particles,
leading to the DLA clusters).

The question remains how representative are these cellular
network models in relation to real assemblies on substrates.
Within this concept, a graph can be considered as the
appropriate model of an assembly of nanoparticles if it takes
into account the main topological features of the assembly
which are relevant for conduction. In this work we have
studied several examples where the topological properties of
the network (betweenness centrality, connectivity, distribution
of voids, etc) affect the conduction paths. It is an advantage
of numerical modeling that such topological properties can
be varied in a controlled manner within the network models,
and a wide range of parameters exploited and compared with
experimental situations.

8. Conclusion

In the conducting nanoparticle films a line of crucial in-
terdependences: assembly processes ⇒ emergent struc-
tures ⇒ emergent physical properties needs to be systemati-
cally observed in both research and technology applications.
Here we have reviewed charge transport via single-electron
tunneling mechanisms in nanoparticle films of various struc-
tures within a numerical modeling approach, which is in many
ways complementary to the laboratory measurements. Within
our approach the quantitative studies of the structure–dynamics
interdependences are made possible by suitable mapping of the
nanoparticle films onto networks and then using graph theoret-
ical methods and simulations of the charge transport on them.
Besides predicting the behavior of the measurable quantities
(e.g., current at the electrodes), the numerical approach reveals
the collective nature of the transport process inside the system,
in particular along the dynamical conduction paths, which lead
to the current–voltage nonlinearity.

In simulations with several types of nanoparticle network
we focused on the role of topological disorder and, for
comparison, quenched charge disorder on single-electron
tunneling conduction. Our results suggest that two major
classes of conduction behavior can be identified, depending
on the global network topology and the presence of charge
disorder. Specifically:

• Regular cellular and close-packed nanoparticle structures,
exhibiting moderately high nonlinearity in the I (V )

curves. For instance ζ ≈ 3 for the hexagonal cellular
network without charge disorder. In the presence of weak

topological disorder, i.e., dispersion of the cell sizes, or
the number of links per node in close-packed networks,
the exponent is slightly reduced, ζ ≈ 2.5–2.8. However,
a strong reduction of the nonlinearity is found in the
presence of quenched charge disorder, ζ ≈ 1.3 found in
these networks. ζ ≈ 2.3 in regular triangular arrays, in
agreement with the experiment [54]. In these network
structures the conduction paths for V � VT have a
practically fixed geometry. This is compatible with the
observed charge fluctuations, with an equal degree of
correlations at the local and the global level, and strong
blocking effects of the charge disorder along the individual
paths.

• Nanoparticle networks with strong topological inhomo-
geneity, manifested in the power-law tail in the distribu-
tion of the betweenness centrality measure and a disper-
sion in the node degree, belong to another class of con-
duction with very large I (V ) nonlinearity. The exponent
ζ ≈ 3.9 is found in the NNET1, comparable with the ex-
perimental results [58]. The nonlinearity in these network
structures occurs in a smaller range of voltages, compared
to the regular structures, and it is related to strong correla-
tions in the charge fluctuations between different dynami-
cally varying conduction paths.

Topologically inhomogeneous nanoparticle networks,
such as the NNET1 in our study, represent a new class of
conducting nanoparticle films with strong collective dynamical
effects. The simulations demonstrate that correlations in
the charge fluctuations are systematically built from the
individual nanoparticles to the paths and the whole network,
leading eventually to large bursts of measurable current at
the electrode. Direct measurements of the charge fluctuations
might be difficult. However, their effects in the time series
of the current fluctuations at the electrode can be directly
measured (such measurements have been recently reported in
the case of nanowires [93]). Our results suggest that the two
classes of conducting nanoparticle networks exhibit different
distributions of their current fluctuations. In particular,
collective charge transport is reflected in the appearance of
‘wings’ in the distribution of current increments, as opposed
to a normal distribution in the regular nanoparticle structures.

We would like to stress that the potential of this model of
capacitively coupled nanoparticle networks, with the numerical
implementation described in sections 2 and 4, exceeds the
cases studied in this work (see also [61]). In particular,
the effects of thermal fluctuations, variations in distances
between nanoparticles and their sizes, leading to a distribution
of capacitances Ci j , and even different types of conduction
through individual junctions can be studied along the same
lines as presented here. Complementary to the experiments,
the numerical studies of this type reveal how the conduction
properties of the nanoparticle films emerge based on their
structure.
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[14] Mušević I, Škarabot M, Tkalec U, Ravnik M and Žumer S 2006
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